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BACKGROUND: Ambient particulate matter (PM) air pollution exposure has been associated with increases in QT interval duration (QT). However,
innate susceptibility to PM-associated QT prolongation has not been characterized.
OBJECTIVE: To characterize genetic susceptibility to PM-associated QT prolongation in a multi-racial/ethnic, genome-wide association study (GWAS).

METHODS: Using repeated electrocardiograms (1986–2004), longitudinal data on PM<10 lm in diameter (PM10), and generalized estimating equa-
tions methods adapted for low-prevalence exposure, we estimated approximately 2:5× 106 SNP×PM10 interactions among nine Women’s Health
Initiative clinical trials and Atherosclerosis Risk in Communities Study subpopulations (n ¼ 22,158), then combined subpopulation-specific results in
a fixed-effects, inverse variance-weighted meta-analysis.
RESULTS: A common variant (rs1619661; coded allele: T) significantly modified the QT-PM10 association (p=2:11× 10− 8). At PM10 concentrations
>90th percentile, QT increased 7 ms across the CC and TT genotypes: 397 (95% confidence interval: 396, 399) to 404 (403, 404) ms. However, QT
changed minimally across rs1619661 genotypes at lower PM10 concentrations. The rs1619661 variant is on chromosome 10, 132 kilobase (kb) down-
stream from CXCL12, which encodes a chemokine, stromal cell-derived factor 1, that is expressed in cardiomyocytes and decreases calcium influx
across the L-type Ca2+ channel.

CONCLUSIONS: The findings suggest that biologically plausible genetic factors may alter susceptibility to PM10-associated QT prolongation in popula-
tions protected by the U.S. Environmental Protection Agency’s National Ambient Air Quality Standards. Independent replication and functional char-
acterization are necessary to validate our findings. https://doi.org/10.1289/EHP347

Introduction
Ambient particulate matter (PM) air pollution contributes sub-
stantially to cardiovascular disease morbidity and mortality
(Dockery et al. 1993; Miller et al. 2007; Samet et al. 2000).
Several studies have attributed part of the contribution to pro-
longed ventricular repolarization, a known risk factor for cardio-
vascular events (Dekker et al. 2004; Goldberg et al. 1991;
Rautaharju et al. 2006a, b; Schouten et al. 1991), as suggested by
PM-associated increases in risk of ventricular arrhythmia/sudden
cardiac death (Dockery et al. 2005; Ljungman et al. 2008).
Indeed, PM has been associated with increases in QT interval du-
ration (QT) (Liao et al. 2010; Mordukhovich et al. 2016; Van

Hee et al. 2011), a quantitative electrocardiographic measure of
ventricular repolarization. Although QT prolongation is also
related to innate variation in myocardial cation channel proteins
(Arking et al. 2014) and the rate at which cation gradients across
these voltage-gated channels return to their resting potential,
genetic susceptibility to (i.e., modification of) PM-associated QT
prolongation has not been evaluated.

The Clean Air Act nevertheless requires the U.S. Environmental
Protection Agency (EPA) to create National Ambient Air Quality
Standards (NAAQS) that protect populations susceptible to the adverse
health effects of PM. Mindful of such regulatory obligations and their
public health implications, the present study examined genome-
wide variation in susceptibility to PM10-associated QT prolonga-
tion among nine longitudinally well-characterized and racially/eth-
nically diverse populations of men and women living in the 48
contiguous states in the United States (U.S. EPARegions 1–10).

Methods

Study Design
The study included 22,158 participants in the Atherosclerosis
Risk in Communities Study (ARIC) (ARIC Investigators
1989) and the Women’s Health Initiative (WHI) clinical
trials (National Institutes of Health 1998) cohorts who
were examined between 1986 and 2004. They consented
to the use of DNA for genetic research, had genomic
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data, and had one or more high-quality, non-paced base-
line or follow-up electrocardiograms (ECGs). They were
not taking antiarrhythmic medication and did not have heart
failure, bundle branch block (QRS interval duration>120ms),or
Wolf-Parkinson-White pattern.

ARIC participants included black and white men and women.
White WHI participants were drawn from three substudies: the
Genome-wide Association Research Network into Effects of
Treatment (GARNET) (National Institutes of Health 2013),
Modification of PM-Mediated Arrhythmogenesis in Populations
(MOPMAP) (National Institutes of Health 2010), and Women's
Health Initiative Memory Study (WHIMS) (Shumaker et al.
1998). Black and Hispanic WHI participants were drawn from
the single nucleotide polymorphism (SNP) Health Association
Resource Project (SHARe) (National Institutes of Health 2011).

Electrocardiography
At triennial participant examinations and examination sites,
trained and certified technicians used standardized procedures
and identical electrocardiographs (MACPCTM; GE Marquette
Electronics Inc.) to digitally record and telephonically transmit
resting, 10-second, standard, simultaneous 12-lead ECGs to a
central laboratory (Epidemiological Cardiology Research Center,
Wake Forest School of Medicine, Winston-Salem, NC) for visual
inspection, identification of technical errors/inadequate quality,
and analysis using the 2001 version of the GE Marquette
12− SLTM program (GE Marquette) (ARIC Investigators 1987;
WHI Study Group 1994). Analysis included reliable estimation
of median QT (ms) from the orthogonal XYZ leads and median
RR interval duration (RR, ms), i.e., the unit-corrected inverse of
heart rate (Schroeder et al. 2004; Vaidean et al. 2005).

Genotyping, Quality Control, and Imputation
Genotypes of participants determined on the Affymetrix GeneChip
SNP Array 6.0, Illumina Human Omni1-Quad v1-0 B, Affymetrix
Genome-wide Human CEU I, or Human OmniExpress Exome-
8v1_B Genome-wide Human platforms were subjected to platform-
specific quality filters (see Table S1). In GARNET, SNP dosage was
imputed using BEAGLE (Browning and Browning 2009) and 1,000
Genomes Project (1000G v3 EUR, 03/2012) reference haplotypes.
In the remaining subpopulations, imputation relied on MACH
(Li et al. 2010) or Minimac (Howie et al. 2012) and HapMap2 CEU
reference haplotypes in ARIC, MOPMAP, and WHIMS whites; a
1:1 mix of HapMap2 CEU/YRI in ARIC and WHI SHARe blacks;
and all 1000G ancestry samples in SHARe Hispanics. Coordinate
ranges for all HapMap 2 (Build 36) SNPs were converted to Build
37 using liftOver (Kuhn et al. 2012).

PM Exposure Estimation
Participant addresses at the time of ECGs were accurately geo-
coded (Whitsel et al. 2004; Whitsel et al. 2006), and then
national-scale, log-normal ordinary kriging and U.S. EPA Air
Quality Systems (AQS) monitor data were used to estimate
geocoded address-specific, daily mean concentrations of
ambient PM<10 lm in diameter (PM10) (Liao et al. 2006)
between 1986 and 2004. Validity of the PM10 exposure-
estimation method during this period was evaluated using
standard cross-validation statistics: the average prediction
error (PE= predicted−measured PM10 concentration at each
monitor site), standardized prediction error (SPE=PE
divided by its estimated standard error), root mean square
standardized (RMSS= standard deviation of SPE across sites),
root mean square prediction error (RMS= empirical standard
error based on the mean square of the predictions), and

mathematically calculated standard error (SE). Observed values
of PE and SPE near 0, RMSS near 1, and RMS near SE
have provided evidence of model validity (Liao et al. 2006;
Liao et al. 2007) and justification for use of the estimates in
published studies of PM10–health outcome associations
(Holliday et al. 2014; Liao et al. 2009; Shih et al. 2011;
Whitsel et al. 2009; Zhang et al. 2009) in which daily con-
centrations were averaged over the day of and day before
each ECG (lag0− 1). Although comparably estimated and accu-
rate, daily mean concentrations of ambient PM<2:5 lm in di-
ameter (PM2:5) were not available until 1999, when EPA
AQS monitoring data for PM2:5 became more widely avail-
able, monthly mean concentrations of ambient PM2:5 were
spatiotemporally estimable at the same geocoded addresses
between 1986 and 2004 using generalized additive mixed
models, the log-transformed ratio of PM2:5 to predicted PM10,
and geographic information system (GIS)-based predictors. A
5- to 10-set, out-of-sample cross-validation of the estimates in
which the squared Pearson correlation between excluded
monthly observations and model predictions (R2 = 0:68− 0:77)
suggested that the model performed well (Yanosky et al.
2014).

Statistical Analysis
The population was stratified by study, race/ethnicity, and sex.
Within these subpopulations, modeling involved a generalized
estimating-equations method implemented in R (via the boss
package) (Voorman and Sitlani 2013) that was designed to detect
interactions between SNPs and low-prevalence environmental
exposures on a genome-wide scale using repeated measures data
(Sitlani et al. 2015), in which i and j denote the ith participant at
the jth electrocardiographic examination. Models were given by

QTij =b0 + b1Gi +b2Eij +b3GixEij + b4Cij,

where QTij is QT (ms); b0 is the intercept; Gi is the HapMap 2
SNP dosage (0–2); Eij is the dichotomized PM10 concentration
(�or> an a priori threshold for abnormality, defined as the
subpopulation-specific 90th percentile); GixEij is the additive
interaction term SNP×PM10, and b4 is a vector of b coefficients
corresponding to Cij, a vector of covariables comprising age
(years), geographic region (in WHI) or center (in ARIC), season,
calendar year, RR interval (ms), and principal components of
ancestry estimated using Eigenstrat (Price et al. 2006). Fit of the
fully adjusted model to dichotomized PM10 concentrations rein-
forced its selection over alternatives expressing QT as a linear,
quadratic, linear spline, or quadratic spline function of PM10 with
one to five knots, with and without restriction (Hardin and Hilbe
2012; Pan 2001). To reduce type-1 errors in detecting SNP×
PM10 interactions at low-prevalence exposure, the t-reference
distribution with degrees of freedom based on Satterthwaite’s
approximation was used (Pan and Wall 2002; Satterthwaite 1946;
Sitlani et al. 2015). SNPs with a low minor allele frequency and
imputation quality also were excluded from subpopulation-
specific analyses (Sitlani et al. 2015) when

2×MAF× IQ×N exposed � 10,

where MAF is the minor allele frequency, IQ is the SNP impu-
tation quality, and N exposed is the estimated number of observa-
tions with a PM10 concentration >90th percentile. For each of
the approximately 2.5 million SNPs remaining across subpopu-
lations, subpopulation-specific SNP×PM10 interaction estimates
were adjusted using genomic control, tested for homogeneity
(Cochran’s Q), and combined using fixed-effects, inverse
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variance-weighted meta-analysis implemented in METAL (Willer
et al. 2010). Two-stage, split-sample alternatives (in which subpo-
pulations are grouped into discovery and replication populations)
were considered but avoided to maximize statistical power (Skol
et al. 2006).

Observed genome-wide distributions of meta-analyzed SNP-
specific interaction p-values were − log10 transformed and com-
pared with those expected under the v2 distribution using a
quantile-quantile (QQ) plot and the genomic inflation factor (k)
(Devlin and Roeder 1999). They were also mapped by chromo-
somal position to produce Manhattan and regional association
plots (Pruim et al. 2010).

After accounting for linkage disequilibrium (LD) among the
approximately 2.5 million SNPs across racially/ethnically diverse
subpopulations, a Bonferroni-corrected threshold of p<5:0×
10− 8 was used to identify genome-wide significant SNP×PM10
interactions (Barsh et al. 2012; Pe'er et al. 2008). Interaction and
standard error estimates of SNPs meeting that threshold were for-
est plotted and used to compute predicted mean QT (ms) and
95% confidence intervals (95% CIs) by genotype and PM10 con-
centration, while adjusting for centered covariables. Sensitivity
of results also was examined as follows: to lower PM10 thresh-
olds for abnormality (50th–80th percentiles), longer lagged expo-
sure averaging periods (1–4wk), alternative exposures (PM2:5)
(Yanosky et al. 2014), use of b-antagonists, additional adjust-
ments [temperature (�C); dew point (�C); barometric pressure
(kPa); neighborhood socioeconomic status; smoker status (cur-
rent, former, never); alcohol drinker status (current, former,
never); total caloric intake (kcal); sedentary lifestyle] and sepa-
rately, application of Bayesian meta-analytic methods allowing for
ancestral population heterogeneity implemented in MANTRA

(Morris 2011) (genome-wide threshold of importance: log 10
Bayes Factor �6:0, probability of heterogeneity<0:50) (Stephens
and Balding 2009).

Significant associations identified lead SNPs and variants in
LD with them (r2 > 0:8) for bioinformatic characterization using
HaploReg V4 (Ward and Kellis 2012), the UCSC Genome
BrowserTM (Kuhn et al. 2012), and the WashU Epigenome
Browser (Zhou et al. 2011) with data from the Encyclopedia of
DNA Elements Project (ENCODE) (Rosenbloom et al. 2010)
and Roadmap Epigenomics Project (Bernstein et al. 2010). Their
characterization involved searching surrounding regions of the
cardiac genome (e.g., in cardiomyocytes, cardiac fibroblasts, and
heart tissue) for evidence of active or altered transcription.

Results
The nine ARIC and WHI subpopulations in this study collec-
tively represented 22,158 participants, of whom 26% were black,
7% were Hispanic, and 22% were male. On average, participants
were 64.3 years old and contributed 2.9 ECGs with a mean QT of
402 ms. The two-day mean (lag0− 1) PM10 concentration and its
90th percentile (P90) were 29:9 lg=m3 and 45:4lg=m3, i.e.,
below NAAQS for PM10 in place at the time of participant
examinations (Table 1) (U.S. EPA 2016).

Manhattan, regional association, and QQ plots (Figures 1 and
2; see Figure S1) of interaction p-values from the trans-ethnic,
fixed-effects, inverse variance-weighted meta-analysis identified
one genome-wide significant association (rs1619661; p=2:11×
10− 8) and 22 subthreshold associations (5 × 10− 8 < p<5×
10− 6) across six independent loci (Table 2). The lead SNP,
rs1619661 is on chromosome 10, approximately 132 kilobase
(kb) downstream of CXCL12 (Table 2). This variant’s coded

Table 1. Characteristics of subpopulations, by study, race/ethnicity, and sex.

Study Race/ethnicity
Sex

ðmean±SDÞ
n

ðmean±SDÞ
Age, y

ðmean±SDÞ
ECGs

ðmean±SDÞ
QT, ms

ðmean±SDÞ
PM10,lg=m3a

ðmean±SDÞ
P90

ðmean±SDÞ
ARIC Black Men 826 57:6± 6:7 3:2± 1:0 402± 33 34:4± 12:7 50.3
ARIC Black Women 1,343 57:3± 6:4 3:3± 0:9 403± 33 34:3± 12:6 50.9
ARIC White Men 3,976 59:0± 6:5 3:5± 0:9 406± 31 33:4± 12:9 49.8
ARIC White Women 4,462 58:5± 6:5 3:6± 0:8 405± 29 33:3± 12:9 49.7
WHI GARNETb White Women 1,732 68:8± 7:1 2:5± 0:9 401± 30 27:6± 10:7 41.5
WHI MOPMAPb White Women 1,237 67:0± 7:0 2:7± 0:8 402± 30 27:3± 10:6 41.2
WHI SHARe Black Women 3,538 64:6± 7:1 2:4± 0:9 400± 33 28:1± 10:5 41.8
WHI SHARe Hispanic Women 1,562 63:5± 6:7 2:5± 0:8 400± 30 29:4± 10:6 43.4
WHI WHIMS White Women 3,482 73:4± 4:5 2:4± 0:7 400± 30 26:6± 10:2 39.7
All White (67%) Women (78%) 22,158 64.3 2.9 402 29.9 45.4

Note: ARIC, Atherosclerosis Risk in Communities study; ECG, electrocardiogram; GARNET, Genomics and Randomized Trials Network; MOPMAP, Modification of PM-Mediated
Arrhythmogenesis in Populations; P90, 90th percentile; PM10, particulate matter <10 lm in diameter; QT, QT interval duration; SD, standard deviation; SHARe, SNP Health
Association Resource; WHI, Women’s Health Initiative; WHIMS, Women's Health Initiative Memory Study.
aRange, 5:9–124:3lg=m3.
bControls.

Figure 1. Manhattan plot of − log10 p-value vs. chromosomal position of each SNP from the trans-ethnic, fixed-effects meta-analysis of the SNP×PM10 inter-
actions. The red line references the genome-wide significance threshold (p-value<5:0× 10− 8).
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allele, T (vs. the noncoded allele, C), was common among racial/
ethnic groups (T allele: 81–92%; CC genotype: 1.6%, CT: 21.8%,
TT: 76.7%) and associated with QT prolongation in eight (89%) of
the nine subpopulations (PCochran0sQ = 0:14; Figure 3).

At PM10 concentrations >90th percentile, QT increased 7 ms
across the CC, CT, and TT rs1619661 genotypes: from 397 (95% CI:
396, 399) to 401 (400, 401) to 404 (403, 404) ms, but at PM10 concen-
trations �90th percentile, QT only increased from 402 (401, 403) to
403 (402, 403) to 403 (403, 403) ms (Figure 4; Table S2).
Associations were insensitive to additional adjustment, Bayesian meta-
analysis ( log10 Bayes Factor = 6:20; probability of heterogeneity =
0:37), and adoption of a 50-lg=m3 PM10 threshold, the annual
NAAQS for PM10. However, they were attenuated by decreasing
PM10 thresholds, increasing lagged exposure averaging periods, substi-
tuting PM2:5, and restricting to b-antagonist users (see Table S3,
Figure S2).

In cardiomyocytes, cardiac fibroblasts, and other (including
fetal, right atrial, and left/right ventricular) heart tissue, genomic
regions surrounding rs1619661 and associated SNPs included de-
oxyribonuclease (DNAse1) hypersensitivity areas, DNA methyl-
ation sites, enhancer/promoter histone marks, and regulatory
motifs (see Figure S3 and “TITLE” in Supplemental Material).

Full results from the trans-ethnic, fixed-effects, inverse-variance
meta-analysis and rs1619661 characterization using HaploReg Version
4 (Ward and Kellis 2012) and the WashUEpigenomeBrowserTM

(Zhou et al. 2011) are available at https://qtgwaspm.web.unc.edu/EHP/
(Gondalia 2016).

Discussion
This genome-wide association study (GWAS) of gene–environment
interactions discovered a genetic variant associated with increased
susceptibility of a racially and geographically diverse population of
U.S. men and women to prolonged ventricular repolarization during
short-duration ambient PM air pollution exposures below annual and
daily thresholds established by the U.S. EPA under the Clean Air Act
(U.S. EPA 2016).

Although we observed a clinically modest, 7-ms increase in
QT among persons in the highest PM10 decile with two vs. zero
copies of the T allele (genotype TT vs. CC, respectively), the T al-
lele of rs1619661 tends to be so common in many U.S. popula-
tions that related but seemingly minor population-level shifts in
QT may have significant public-health implications. Indeed,
upper decile PM10-associated increases in QT exceed the U.S.
Food and Drug Administration (FDA) 5-ms threshold used in
premarket evaluation of drug safety (U.S. FDA 2015), an
increase that may also carry cardiovascular disease morbidity and
mortality risk (Zhang et al. 2011).

The attendant cardiovascular risks are plausibly related to
CXCL12 (Table 2)—the locus most proximate to rs1619661—
which has been implicated in, for example, GWAS of coronary
artery disease (Samani et al. 2007) and early-onset myocardial in-
farction (Kathiresan et al. 2009). CXCL12 encodes stromal cell-
derived factor 1 (SDF1), an evolutionarily conserved chemokine that
is expressed in cardiomyocytes (Pyo et al. 2006) and is induced by
pro-inflammatory stimuli, including particulate exposures (Liberda et
al. 2010). SDF1 binds to CXCR4, a seven-transmembrane, G-protein
coupled receptor that is widely distributed on cardiomyocytes and
neurons.

In those cell types, the ligand-receptor complex inhibits b-
adrenergically activated calcium influx through the L-type Ca2+ ion
channel (Pyo et al. 2006), recently implicated in the largest GWAS
of QT to date (Arking et al. 2014). Resultant shortening of the ven-
tricular action potential (Phase 2) and its electrocardiographic mani-
festation, QT interval duration, was apparent in the present study
among persons in the highest PM10 decile with the C allele [i.e., those

Figure 2. Regional plots of the locus, rs1619661, identified by the trans-
ethnic, fixed-effects meta-analysis of the SNP×PM10 interactions, on chro-
mosome 10, near CXCL12. Each point represents the − log10 p-value of a
SNP plotted as a function of its genomic position (build 37) and the ge-
nome-wide significance threshold (p-value<5:0× 10− 8). One SNP reached
this threshold. The color coding of all other SNPs indicated linkage disequi-
librium with this lead SNP, estimated among Africans (A), Ad-mixed
Americans (B), and Europeans (C) from 1000G. Recombination rates were
estimated from the 1,000 Genomes Project.
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individuals with the CC or CT (vs. TT) genotype]. Although contrary
to PM-associated increases in QT duration observed in prior studies
(Liao et al. 2010; Mordukhovich et al. 2016; Van Hee et al. 2011),
this group represents only a minority of the study population.
Likewise, its reversibility was reflected, albeit in this observational
epidemiologic context, by the attenuation of the observed
SNP×PM10 interaction among users of b-adrenergic antagonists, the
first-line therapy in long-QT syndromes (LaRocca et al. 2010).

The SNP×PM10 interaction also was attenuated at longer
lagged exposure averaging periods in this context. This form
of attenuation highlights the potential role of b-adrenergic
receptor-mediated blunting of sympathetic nervous system
responses to chronic PM exposure. Indeed, sympathetic
responses of the heart to stressors are mediated by the binding
of catecholamines to cardiac b-adrenergic receptor s, the den-
sity, sensitivity, and activity of which decrease with chronic
stress exposure (Konarska et al. 1989; Stone 1983). Chronic
stress exposures also lead to adaptive changes of neural and
glial cells in the central nervous system (McEwen 2007),
which controls the heart via innervation of the sinoatrial node.
The attenuated interactions that we observed herein may
thereby reflect physiologically desensitizing adaptations to
longer-term PM exposures.

However, several limitations apply to the study of gene-
environment interaction in genome-wide contexts, e.g., low

power and overestimation of observed effect sizes in hypothesis-
generating discovery efforts (Göring et al. 2001). To increase
power, we used all nine subpopulations in the discovery effort.
To further increase power, we used generalized estimating equa-
tions methods to leverage repeated measures of QT and PM10
among 22,158 participants from two well-characterized, multi-eth-
nic, and environmentally diverse cardiovascular disease cohorts.
Furthermore, we established homogeneity and robustness of
SNP×PM10 interaction estimates among the cohorts, subpopula-
tions, and races/ethnicities in meta-analyses, which were also sub-
jected to additional adjustment for meteorological, neighborhood-
socioeconomic, and lifestyle characteristics. Finally, the trans-ethnic,
fixed-effects, inverse variance-weighted meta-analysis discovered a
genome-wide significant interaction in data that also provided con-
vincing evidence of association in a Bayesian meta-analysis that
allowed for racial/ethnic heterogeneity, where the interaction was
found to be 1.6 million times more likely under the alternative to the
null hypothesis of no association.

The 132-kb separation of rs1619661 and CXCL12 also limits
the biological plausibility of their role in PM-associated QT pro-
longation. However, causal genes that are megabases away from
GWAS-implicated lead SNPs have been identified in other set-
tings (Musunuru et al. 2010; Smemo et al. 2014). For example,
obesity-associated SNPs within the well-known FTO locus
directly interact with promoter regions of IRX3 that are

Figure 3. Forest plot of SNP×PM10 interaction (95% confidence interval) per T allele increase in rs1619661 (genotype CT) at PM10 concentrations >90th per-
centile, by study, race/ethnicity, and overall (PCochran0s Q = 0:14).

Table 2. Findings from the trans-ethnic, fixed-effects, inverse variance-weighted meta-analysis, including sub-threshold associations (5 × 10− 8 < p<5 ×10− 6).

Chr Position Lead SNP CA /NCA
Coded allele Frequency

p-Value
Interaction

Estimate (SE) n Nearest Gene SNPsaBlack Hispanic White

10 44,733,383 rs1619661 T/C 0.81 0.92 0.91 2:11 x 10− 8 2.55 (0.46) 22,158 CXCL12 8
22 51,065,600 rs6151412 G/A 0.90 0.95 0.95 1:02 x 10− 6 3.88 (0.79) 20,921 ARSA 1
8 83,252,586 rs10504754 A/G 0.74 0.47 0.43 1:53 x 10− 6 1.54 (0.32) 22,158 SNX16 1
7 48,811,506 rs13309098 G/A 0.88 0.88 0.93 1:85 x 10− 6 2.37 (0.50) 22,158 ABCA13-CDC14C 4
2 213,065,465 rs6725041 T/C 0.78 0.44 0.48 2:55 x 10− 6 1.52 (0.32) 22,158 ERBB4 8
20 39,435,700 rs7361259 T/C 0.91 4:61 x 10− 6 5.98 (1.39) 2,169 MAFB 1

Note: CA, coded allele; CAF, coded allele frequency; Chr, chromosome; NCA, noncoded allele; SE, standard error; SNP, single nucleotide polymorphism.
aTotal number of significant or sub-threshold SNPs located within the same gene or in LD with the lead SNP (r2 � 0:80).
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approximately 500 kb downstream. In fact, IRX3, which is cau-
sally linked to body mass and composition, participates in long-
range interactions across a relatively large, 2-megabase region
(Ragvin et al. 2010; Smemo et al. 2014). We also identified poten-
tially active or altered transcription in regions of the cardiac ge-
nome surrounding rs1619661 and its associated SNPs with data
from ENCODE. Although it is unclear whether these regions are
functionally linked to CXCL12, it is plausible because of impor-
tant, long-range (i.e., ∼ 120 kb) mechanisms of distal gene regula-
tion (Sanyal et al. 2012). Nevertheless, expression assays are
needed to confirm the proposed link between the rs1619661 locus
and CXCL12.

Replication—a suggested gold standard for validating GWAS
of main genetic effects—poses a particular challenge for gene-
environment interaction studies like the one described here
(Aschard et al. 2012; Aslibekyan et al. 2013; Hutter et al. 2013;
Thomas et al. 2012). The extent of the challenge is related to the
need for similarly powered populations with equally well-
harmonized outcomes and exposures, even if they are, e.g., rare,
difficult to measure, or peculiar to racial/ethnic minority popula-
tions poorly represented in large-scale GWAS to date. In the pres-
ent study, a well-powered, independent replication was not
feasible, given the limited availability of populations with high-
quality, 12-lead ECGs; national-scale, kriged daily mean PM10
concentrations; and genome-wide SNP data. Moreover, functional
validation in model organisms (Gibert et al. 2013; Stevens et al.

2015) was beyond the scope of the original project. We therefore
view this discovery effort as hypothesis-generating, and given the
importance of replication in protecting against type-1 error
(Siontis et al. 2010), we have provided publicly accessible sum-
mary statistics (https://qtgwaspm.web.unc.edu/EHP/) to facilitate
functional validation and external replication as additional data
becomeavailable.

Although not reaching genome-wide significance, the sub-
threshold loci identified herein (Table 2) may also warrant scru-
tiny. ARSA (rs6151412, synonymous) and ERBB4 (rs6725041,
intronic) are particularly compelling in this setting due to their
functional role in Ca2+ transport (Brero et al. 2010; Ritzler et al.
1992). ERBB4 has additionally been associated with cardiac myopa-
thy (García-Rivello et al. 2005), coronary artery calcification
(Wojczynski et al. 2013), and cardiomyocyte proliferation (Wadugu
and Kühn 2012). SNX16 (rs10504754, 498 kb upstream) has been
associated with heart failure (Smith et al. 2010).MAFB (rs7361259,
118 kb upstream) has been implicated in a gene–drug interaction
GWAS of rheumatoid arthritis, an inflammatory disorder associated
with QT prolongation (Chauhan et al. 2015). ABCA13-CDC14C
(rs13309098; 124-137 kb downstream) currently has no established
link with cardiovascular disease.

Conclusions
We conclude that genetic variation may modify susceptibility to
PM10-associated QT prolongation, and pending further follow-

Figure 4. Predicted mean (95% confidence interval) QT (ms) per unit increase in the coded allele (T) dosage of rs1619661 at PM10 concentrations �and >90th percen-
tile (P90), while adjusting for age, geographic region or center, season, calendar year, RR interval, and ancestry. C allele frequency range: 8–19%.
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up, cautiously postulate changes in L-type Ca2+ ion channel
activity triggered by inflammatory responses to PM exposure as a
possible mechanism. In lieu of such possibilities, previously
hypothesized genetic, inflammatory, and neural mechanisms of PM-
mediated arrhythmogenesis would remain largely distinct. The
Clean Air Act mandates setting of NAAQS for PM that protect sen-
sitive populations—including persons with innate factors that may
increase vulnerability to PM-associated disease. Although we can-
not unequivocally link genetic variation to PM-associated QT pro-
longation, we did discover a biologically plausible variant that may
confer susceptibility, a finding that must undergo replication and
functional characterization in future studies.
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